指数分布期望方差是怎么证明的 指数分布期望方差证明方法
2023-07-27
更新时间:2023-07-27 13:11:49 作者:知道百科
1、首先知道EX=1/a DX=1/a^2
2、指数函数概率密度函数:f(x)=a*e^(ax),x>0,其中a>0为常数。
f(x)=0,其他
3、有连续行随机变量的期望有E(X)==∫|x|*f(x)dx,(积分区间为负无穷到正无穷)
则E(X)==∫|x|*f(x)dx,(积分区间为0到正无穷),因为负无穷到0时函数值为0.
EX)==∫x*f(x)dx==∫ax*e^(-ax)dx=-(xe^(-ax)+1/a*e^(-ax))|(正无穷到0)=1/a
而E(X^2)==∫x^2*f(x)dx=∫x^2*a*e^(ax)dx=-(2/a^2*e^(-ax)+2x*e^(-ax)+ax^2*e^(-ax))|(正无穷到0)=2/a^2,
DX=E(X^2)-(EX)^2=2/a^2-(1/a)^2=1/a^2
即证!
以上就是指数分布期望方差是怎么证明的 指数分布期望方差证明方法的相关介绍,希望能对你有帮助,如果您还没有找到满意的解决方式,可以往下看看相关文章,有很多指数分布期望方差是怎么证明的 指数分布期望方差证明方法相关的拓展,希望能够找到您想要的答案。